

PERIMETERS AND AREAS

Perimeters of Triangles and Quadrilaterals

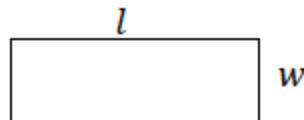
The Perimeters of Triangles and Quadrilaterals

Find the perimeters of triangles and quadrilaterals

Perimeter – is defined as the total length of a closed shape. It is obtained by adding the lengths of the sides inclosing the shape. Perimeter can be measured in m , cm , dm , m,km e. t. c

Examples

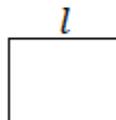
- (i) A rectangle of length l and width w



Perimeter, $P = l + l + w + w = 2l + 2w = 2(l + w)$

$$\boxed{P = 2(l + w)}$$

- (ii) A square of side l

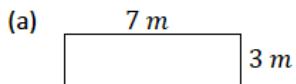


Perimeter, $P = l + l + l + l = 4l$

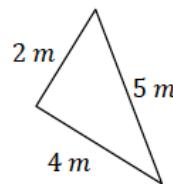
$$\boxed{P = 4l}$$

Example 1

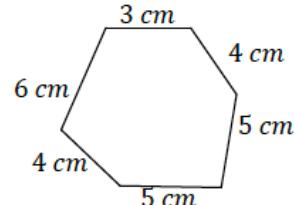
Find the perimeters of the following shapes



(b)



(c)



Solution

- a. Perimeter = $7m + 7m + 3m + 3m = 20 \text{ m}$
- b. Perimeter = $2m + 4m + 5m = 11 \text{ m}$
- c. Perimeter = $3cm + 6cm + 4cm + 5cm + 5cm + 4cm = 27 \text{ cm}$

Circumference of a Circle

The Value of Pi (Π)

Estimate the value of Pi (Π)

The number π is a mathematical constant, the ratio of a circle's circumference to its diameter, commonly approximated as **3.14159**. It has been represented by the Greek letter "π" since the mid 18th century, though it is also sometimes spelled out as "pi" (/paɪ/).

The perimeter of a circle is the length of its circumference *i. e perimeter = circumference*. Experiments show that the ratio of the circumference to the diameter is the same for all circles

i. e $\frac{\text{circumference}}{\text{diameter}} = \text{constant number called, } \pi$

$$\frac{C}{d} = \pi$$

$$C = \pi d$$

Where C = circumference of a circle, d = diameter of the circle

But $d = 2r$, then

$$C = 2\pi r$$

Where r = radius of the circle

The Circumference of a Circle

Calculate the circumference of a circle

Example 2

Find the circumferences of the circles with the following measurements. Take $\pi = 3.14$

- a. diameter 9 cm
- b. radius 3½m
- c. diameter 4.5 dm
- d. radius 8 km

Solution

- (a) $C = \pi d = 3.14 \times 9 = 28.26 \text{ cm}$
(b) $C = 2\pi r = 2 \times 3.14 \times 3\frac{1}{2} = 6.28 \times \frac{7}{2} = 21.98 \text{ m}$
(c) $C = \pi d = 3.14 \times 4.5 = 14.13 \text{ dm}$
(d) $C = 2\pi r = 2 \times 3.14 \times 8 = 50.24 \text{ km}$

Example 3

The circumference of a car wheel is 150 cm. What is the radius of the wheel?

Solution

Given circumference, $C = 150 \text{ cm}$

$$C = 2\pi r$$

$$r = \frac{C}{2\pi} = \frac{150}{2 \times 3.14} = \frac{150}{6.28} = 23.89 \text{ cm}$$

∴ The radius of the wheel is 23.89 cm

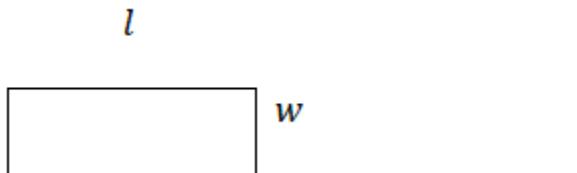
Areas of Rectangles and Triangles

The Area of a Rectangle

Calculate the area of a rectangle

Area – can be defined as the total surface covered by a shape. The shape can be rectangle, square, trapezium e. t. c. Area is measured in mm!, cm!, dm!, m! e. t. c

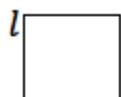
Consider a rectangle of length l and width w



$$\text{Area, } A = l \times w = lw$$

$$A = lw$$

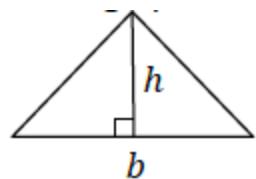
Consider a square of side l



$$\text{Area, } A = l \times l$$

$$A = l^2$$

Consider a triangle with a height, h and a base, b



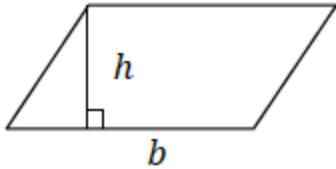
$$\text{Area, } A = \frac{1}{2}hb$$

Areas of Trapezium and Parallelogram

The Area of a Parallelogram

Calculate area of a parallelogram

A parallelogram consists of two triangles inside. Consider the figure below:

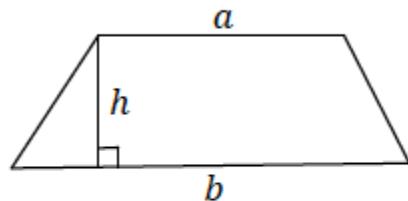


$$\boxed{\text{Area, } A = bh}$$

The Area of a Trapezium

Calculate the area of a trapezium

Consider a trapezium of height, h and parallel sides a and b



$$\boxed{\text{Area, } A = \frac{1}{2}h(a + b)}$$

Example 4

The area of a trapezium is 120 m^2 . Its height is 10 m and one of the parallel sides is 4 m . What is the other parallel side?

Solution

Given area, $A = 120 \text{ m}^2$, height, $h = 10 \text{ m}$, one parallel side, $a = 4 \text{ m}$. Let other parallel side be, b

Then

$$A = \frac{1}{2} h(a + b)$$

$$120 = \frac{1}{2} \times 10 \times (4 + b)$$

$$120 = 5 \times (4 + b)$$

$$4 + b = \frac{120}{5}$$

$$4 + b = 24$$

$$b = 24 - 4 = 20$$

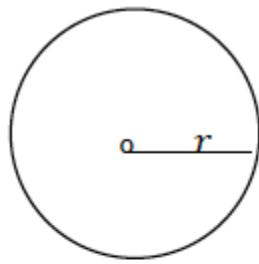
\therefore The length of other parallel side is 20 m

Area of a Circle

Areas of Circle

Calculate areas of circle

Consider a circle of radius r;



$$\boxed{\text{Area, } A = \pi r^2}$$

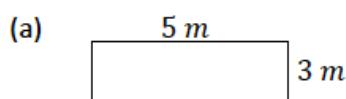
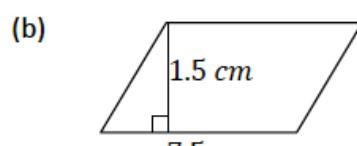
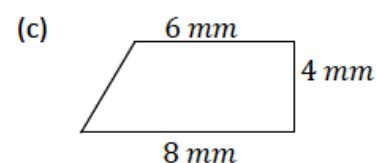
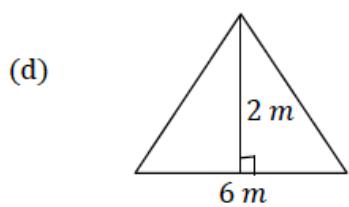
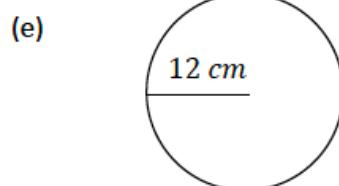
Also $r = \frac{d}{2}$, then

$$\text{Area, } A = \pi r^2 = \pi \left(\frac{d}{2}\right)^2 = \frac{\pi d^2}{4}$$

$$\boxed{\text{Area, } A = \frac{\pi d^2}{4}}$$

Example 5

Find the areas of the following figures



Solution

- (a) $A = lw = 5 \times 3 = 15 \text{ m}^2$
- (b) $A = bh = 7.5 \times 1.5 = 11.25 \text{ cm}^2$
- (c) $A = \frac{1}{2}h(a + b) = \frac{1}{2} \times 4 \times (6 + 8) = \frac{1}{2} \times 4 \times 14 = 28 \text{ mm}^2$
- (d) $A = \frac{1}{2}hb = \frac{1}{2} \times 2 \times 6 = 6 \text{ m}^2$
- (e) $A = \pi r^2 = \frac{22}{7} \times 12^2 = \frac{22}{7} \times 144 = \frac{3168}{7} = 452.57 \text{ cm}^2$

Example 6

A circle has a circumference of 30 m. What is its area?

Solution

Given circumference, $C = 30 \text{ m}$

$$C = 2\pi r$$

$$r = \frac{C}{2\pi} = \frac{30}{2 \times 3.14} = \frac{30}{6.28} = 4.78 \text{ m}$$

Then

$$A = \pi r^2 = \frac{22}{7} \times (4.78)^2 = \frac{22}{7} \times 22.85 = \frac{502.7}{7} = 71.81 \text{ m}^2$$